
UNIX Shell Programming

Reminder that there are some useful tutorials for UNIX Shell use and program-
ming. See the Software Carpentries tutorial and give it a try.

Basic UNIX programming in the BASH shell can help you do make some simple
things more possible. More complicated programming is probably better achieved
in a scripting language like Python which will be covered in the rest of the course,
but BASH can be very powerful and useful to apply these to improve the tools.

See the Software Carpentry tutorial.

Variables

Variables are used to store information in Variables. To access a value of a
variable in UNIX you can prefix it with $.

For example to assign a variable a value

NAME="GeneA"
NAME2="GeneB"
echo "$NAME $NAME2"

NAME="GeneC"
NAME3=$NAME.$NAME2
echo "$NAME $NAME2 $NAME3"

Loops and Logic

if [TEST]; then DOSOMETHING fi can be used to test for a logical statement.
This testing structure also allows for other conditions to be met with elif or
“else if” and else.

For example:

if [$NAME == "GeneC"]
then

echo "Name is C"
fi
if [$NAME != "GeneA"]
then

echo "Name is not GeneA"
fi
NAME="GeneA"
if [$NAME == "GeneA"]; then

echo "A"

1

https://swcarpentry.github.io/shell-novice/
https://swcarpentry.github.io/shell-novice/05-loop/index.html

elif [$NAME == "GeneB"]; then
echo "B"

else
echo "had another class for NAME: $NAME"

fi
NAME="genea"
if [$NAME == "GeneA"]; then

echo "A"
elif [$NAME == "GeneB"]; then

echo "B"
else

echo "had another class for NAME: $NAME"
fi

The structure requires the [] and there is expected to be a space between the
[or] and the options; The then is also require but if you want to compact this
slightly differently.

if [$NAME == "GeneC"]; then echo "Name is C"; fi

Multiple tests can be applied in same if statement but require double brackets.

NAME=GeneC
if [[$NAME == "GeneC" || $NAME == "GeneB"]]; then

echo "Name is $NAME"
fi

More logical operator such as testing if a number if smaller or greater with -gt
and -lt.

NUM=10
if [$NUM -gt "0"]; then

echo "NUM is greater than 0"
fi

Can test if one file is newer than another with -nt. Also showing how to use
else.

touch fileA.fasta
echo "second file" > fileB.fasta
if [fileA.fasta -nt fileB.fasta]; then

echo "File A is newer"
else

echo "File B is newer"
fi

2

Really useful testing options

-f - if the variable is a file and exists -s - if file exists and is not zero -d - if the
variable is a directory

-z - if variable is empty

if [! -f $file1]; then
echo "file $file1 does NOT exist"

fi

if [-z $var1]; then
echo "variable $var1 is empty"

fi

if [-s $file2]; then
echo "file $file2 exists and is not empty"

fi

Loops

Loops are important components for iterating through data. For loops we can specify a list to go through
explicitly. for loops are structured with
`for VARIABLE in LIST; do DOSOMETHING done`

```bash
for n in A B C D
do
echo "$n"

done

Can also use the results of a function to loop through a dataset, folder of files,
etc. For loops are used when the specific list is available at the start of the loop.

for file in $(ls *.fa)
do

echo "file $file is found"
done

Can use the seq function to make a list of numbers. Arguments are either the
ending number, or start and end, or start, end, and offset.

seq 3 # start at 1 and count to 3
1
2
3

seq 5 7 # start at 5 end at 7
5

3



6
7

seq 5 2 10 # start at 5, end at 10, offset by 2
5
7
9

So if you want to iterate through a bunch of numbers.

for m in $(seq 3 15)
do

echo "m is $m"
done

Using UNIX tools with Variables

Capturing output from a program is also a useful. For example if you want
to do simple mathematical arithmetic with the UNIX tool expr (or “evaluate
expression”). It takes arguments for simple math.

To save the result from a command you can use the $( ) structure and also
can use the “‘” backquote, they both will work for taking the output from an
application and saving it in a variable.

n=$(echo "ABCDEFG" | wc -c) # this prints out the number of characters
echo "$n characters"
n=`echo "ABCD" | wc -c`
echo "$n characters"

a=1
echo "a is $a"
expr $a + 1
a=$(expr $a + 1)
echo "a is now $a"

Loops again

While loops can be used which can run

N=1
while [ $N -lt 10 ]
do

echo "N is $N"
N=$(expr $N + 1)

done

Can also use while to read data from a file using the read directive.

4



echo "wolf tooth animal" > data.txt
echo "snake fang animal" >> data.txt
echo "mantis mandible insect" >> data.txt
while read COL1 COL2 COL3
do
echo "COL1 is $COL1; COL3 is $COL3"

done < data.txt

How these columns are delimited are dependent on an environment variable
defined $IFS. For example to separate columns based on comma:

echo "wolf,tooth,animal" > data.csv
echo "snake,fang,animal" >> data.csv
echo "mantis,mandible,insect" >> data.csv
IFS=,
while read COL1 COL2 COL3
do
echo "COL1 is $COL1; COL3 is $COL3"

done < data.csv

Can also pass data INTO the while loop with pipes. This is a really useful way
to parse out columns of data.

IFS=,
echo "Hop,Skip,Jump" | while read COL1 COL2 COL3;
do

echo "COL1=$COL1 ... COL2 is $COL2"
done

Data Processing

https://www.safaribooksonline.com/library/view/bioinformatics-data-
skills/9781449367480/ch07.html#chapter-07

https://github.com/biodataprog/GEN220/tree/master/data

sort Sort data and files.

sort file.txt > file.sorted.txt

Type of sorting: * -d/–dictionary_order : consider only blanks & alphanumeric
characters * -n/–numeric-sort : compare according to string numerical value *
-f/–ignore-case : upper/lower doesn’t matter * -r/–reverse : reverse the order *
-k : specify the key positions to sort by

#generate some random numbers between 0 and 100
for n in $(seq 100); do echo $(($RANDOM%100)); done > numbers.txt

5



sort numbers.txt | head -n 10
10
10
12
25
30
34
39
42
49
49

But if sort by numeric - you see there are some numbers < 10 which weren’t
shown.

sort -n numbers.txt | head -n 10
0
1
2
3
4
6
6
8
8
13

uniq - Collapse runs of words/numbers into unique list. This only works if the
data are sorted.

sort -n numbers.txt | uniq | head -n 10
0
1
2
3
4
6
8
13
15
16

To see the numbers (or words) uniquely with counts of the occurrences use ‘-c’.

sort -n numbers.txt | uniq -c | head -n 10
1 0
1 1
1 2
1 3

6



1 4
2 6
2 8
3 13
2 15
2 16

Hey let’s sort this list so we know the numbers that show up most frequently

$ sort -n numbers.txt | uniq -c | sort -r -n | head -n 8
4 91
4 54
4 32
3 57
3 22
3 17
3 13
2 95

Sort Multicolumn data - you can sort by the 2nd or 3rd column.

head -n 10 data/rice_random_exons.bed
Chr7 21408673 21408826
Chr9 16031526 16031938
Chr11 4762531 4762595
Chr8 54040 54193
Chr10 19815475 19815747
Chr3 16171331 16172869
Chr10 2077882 2077938
Chr3 20517604 20517936
Chr10 9777446 9777527
Chr2 4967096 4967246
$ sort -k1,1 -k2,2n data/rice_random_exons.bed | head -n 5
Chr1 12152 12435
Chr1 98088 98558
Chr1 216884 217664
Chr1 291398 291534
Chr1 338180 338310
$ sort -k1,1 -k2,2n data/rice_random_exons.bed | tail -n 5
Chr9 22369724 22369776
Chr9 22508926 22509014
Chr9 22753347 22753458
Chr9 22924316 22924424
ChrSy 136034 136323

cut Cut - subselect and print certain columns from a file

YAR060C Chr_I 100.00 336 0 0 336 1 217148 217483 8.6e-83 298.8
YAR060C Chr_I 64.00 325 95 22 330 14 198385 198695 4.1e-18 84.0

7



YAR060C Chr_I 74.07 108 25 3 110 6 211012 211119 2.1e-10 58.4
YAR060C Chr_I 97.02 336 8 2 1 336 14799 15132 1.3e-77 281.6
YAR060C Chr_I 72.48 109 25 5 6 110 20974 21081 2.3e-10 58.2
YAR061W Chr_I 100.00 204 0 0 1 204 218131 218334 3.4e-54 203.1
YAR061W Chr_I 70.62 194 57 0 1 194 203400 203593 6.5e-23 99.2
YAR061W Chr_I 94.61 204 7 4 204 1 13951 14150 5e-48 182.6
YAR061W Chr_I 67.88 193 62 0 194 2 27770 27962 3.9e-20 90.0
YAL030W Chr_I 100.00 252 0 0 103 354 87502 87753 2.5e-55 207.7

Just print out the first column of sequence names.

cut -f1 data/yeast_orfs-to-chr1.FASTA.tab | head -n 7
YAR060C
YAR060C
YAR060C
YAR060C
YAR060C
YAR061W

Print out Column 2

cut -f2 data/yeast_orfs-to-chr1.FASTA.tab | head -n 5
Chr_I
Chr_I
Chr_I
Chr_I
Chr_I

Get the Query name and Percent Identity

cut -f1,3 data/yeast_orfs-to-chr1.FASTA.tab | head -n 5
YAR060C 100.00
YAR060C 64.00
YAR060C 74.07
YAR060C 97.02
YAR060C 72.48
YAR061W 100.00
YAR061W 70.62
YAR061W 94.61
YAR061W 67.88
YAL030W 100.00
YAL030W 98.15

Cut two columns out, and run sort to sort on the column

sort -k3,1nr data/yeast_orfs-to-chr1.FASTA.tab | cut -f1,3 | head -n 5
HRA1 100.00
YAL001C 100.00
YAL002W 100.00
YAL003W 100.00

8



YAL003W 100.00

$ sort -k9,1n data/yeast_orfs-to-chr1.FASTA.tab | head -n 5
YAL069W 100.00 335 649
YAL068W-A 100.00 538 792
YAL068C 100.00 1807 2169
YAR020C 79.76 2008 2169
YAL067W-A 100.00 2480 2707

Made up example, but you can cut two columns out. And also PASTE things
back together.

cut -f1,3,4 data/yeast_orfs-to-chr1.FASTA.tab > first_cols.tab
cut -f1,7 data/yeast_orfs-to-chr1.FASTA.tab > second_cols.tab

paste first_cols.tab second_cols.tab | head -n 5
YAL027W 100.00 786 YAL027W 1
tL(CAA)A 100.00 44 tL(CAA)A 39
tL(CAA)A 100.00 38 tL(CAA)A 1
YAL028W 100.00 1587 YAL028W 1
YAL029C 100.00 4416 YAL029C 4416

AWK

Can also use awk to process column data.

awk '{print $1}' yeast_orfs-to-chr1.FASTA.tab # print out the first column of a file
# specificy a different delimiter (,)
head -n 3 data/random_exons.csv
Chr5,27781790,27781800
Chr11,14656670,14656870

$ awk -F, '{print $1,$2}' data/random_exons.csv | head -n 3
Chr5 27781790
Chr11 14656670
Chr3 14560358

Here get the length of an aligmment (column 6 is the START and column 7 is
the end)

awk '{print $7-$6}' data/yeast_orfs-to-chr1.FASTA.tab

Advanced Variable usage

BASH also supports the concepts of Arrays. This tutorial provides useful
summary of how to use arrays.

9

https://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_10_02.html


A simple example is like this

animals=(dog cat mouse)
for name in ${animals[@]};
do
echo "name is $name"

done
# add to the array
animals+=(snake)
for name in ${animals[@]};
do
echo "name is $name"

done

10


	UNIX Shell Programming
	Variables
	Loops and Logic
	Really useful testing options
	Using UNIX tools with Variables
	Loops again

	Data Processing
	AWK
	Advanced Variable usage


