
Python Introduction

Python is a scripting language - much like BASH / SHELL is a list of commands.

We run Python programs using a program called python. There are multiple
versions of python, version 3 is current standard and version I will focus on.

Python is one of many scripting languages. Others include Perl, Ruby, Rust and
even the Bash/Shell programming we’ve been talking about.

It is a script because we write the code in a text file and then run it directly
with an interpreter. Before when we ran a script in bash/shell we would do

bash myscript.sh

To run code for python we will do

python myscript.py

A first script

Here’s a text file that is called ‘hello.py’ and contains the following. This would
be the content of a text file we called hello.py.

print("Hello World!")

$ python hello.py
hello world
$ python hello.py > message.txt # can redirect the output
$ cat message.txt
hello world

The Python interpreter

The Python interpreter is a program we run, giving it a file or script which
specifies the actions for it to take.

One can also just run the interpreter on the command line and interact with it
directly. Just execute the python command on the command line.

$ python
Python 2.7.10 (default, Oct 3 2015, 13:37:56)
[GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.72)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print "hello world"
hello world

Other math capabilities

1

http://python.org
http://www.perl.org
http://www.ruby-lang.org/
https://www.rust-lang.org/


The % operator is modulus - it means return the remainder after dividing by
the number. It is useful to see if something divides evenly into a number

>>> 10 / 3
3
>>> 10 % 3 # 10 / 3 is 3 with remainder of 1
1
>>> 10 / 2
5
>>> 10 % 2 # 10 / 2 is 5 with a remainder of 0
0

This can be useful to see if something is “Modulo” something (or Mod) – really
useful when looking at sequence data and checking to see if it will translate – is
the length/value mod 3 == 0 - means it is divisible perfectly by 3.

Strings in Python

Quotes can define the different special characters and use of strings

>>> 'break dance'
'break dance'
>>> "break dance"
'break dance'
>>> "don't break dance"
"don't break dance"
>>> 'don\'t break dance'
"don't break dance"
>>> ('concatenate ' 'these ' 'together')
'concatenate these together'

Variables

Data can be assigned to variables. Variables don’t exist until they are declared.

The = is used for assignment. Some modifiers allow for modifying variable in
place

• += add to the value of the variable
• -=, /=, *= are other

>>> d = 0 # declare the variable d
>>> print("d is ", d)
d is 0
>>> print("e is ", e)
Traceback (most recent call last):
File "&lt;stdin&gt;", line 1, in &lt;module&gt;

2



NameError: name 'e' is not defined
>>> d=8*7
>>> print(d)
56
>>> d += 100
>>> print(d)
156

String functions

Documented well in the python string library code.

• string.find(substring,[,starting[,end]]) Find a substring within a string

>>> str = "Jumping cow over the moon"
>>> str.find("cow")
8
>>> str.find("o") # start searching from beginning
9
>>> str.find("o",12) # start searching after character 12
22

• string.split(separator, max_split)

Split a string into a list based on a separator (great for column delimited data!).
max_splits specifies if it should stop after N separators are found

>>> str = "Jumping cow over the moon"
>>> str.split(" ")
['Jumping', 'cow', 'over', 'the', 'moon']
>>> str.split(" ",2)
['Jumping', 'cow', 'over the moon']

substring - extracting parts of a larger string

You can query the string with the [ ] operator to get a subset of the string

>>> msg="I am a golden god!"
>>> msg[:4] # everything before position 4
'I am'
>>> msg[7:13] # get a middle part from 7-15
'golden'
>>> msg[14:] # get from 14 to the end
'god!'
>>>msg[msg.find('am'):msg.find('!')]
'am a golden god'

3

https://docs.python.org/3/library/string.html?highlight=string


Lists and list functions

These are useful for collecting items you can enumerate.

>>> l = [ 2, 3, 5]
>>> l[0] # lists start at 0
2
>>> l[1:3]
3,5
>>> l.append(10)
>>> print(l)
[2, 3, 5, 10]

The sum() function will summate a list (add all the numbers up), len() will
report how long it is. max() will report the largest number in a list

sum(l)
# prints
# 20
len(l)
# prints
# 4
max(l)
# prints
# 10

Sorting lists

l = [10,3,17,4]
l.sort()
l
# prints
#[3, 4, 10, 17]
ls = ['zf','fz','no','apple']
ls.sort()
print(ls)
# prints
#['apple', 'fz', 'no', 'zf']

Using split to parse strings into lists

Starting with strings containing several parts which encode information you
want.

4



Symbol:NASDAQ=AAPL;Date:2015-10-01;Performance:Open=111.29,Close=109.56
Symbol:NASDAQ=MSFT;Date:2015-10-01;Performance:Open=46.65,Close=46.53

Extract some of the info using split

q =
"Symbol:NASDAQ=AAPL;Date:2015-10-01;Performance:Open=111.29,Close=109.56"
types = q.split(";")
print(types)
# will print
['Symbol:NASDAQ=AAPL', 'Date:2015-10-01',
'Performance:Open=111.29,Close=109.56']
symbolset = types[0].split(":")
print(symbolset)
# will print
['Symbol', 'NASDAQ=AAPL']
symbol = symbolset[1].split("=")
symbol
# will print
['NASDAQ', 'AAPL']
print(symbol[1])
# will print
'AAPL'
print(symbolset[1].split("=")[1])
# will print
'AAPL'

repr function to display an object/string/number

# use repr to print out literally the string
hello = 'hello world\n'
print(hello)
# would print
hello world

print(repr(hello))
# would print
'hello world \n'

More fancy printing

Can use formatting to print some things out like these important numbers and
phrase.

5

http://genius.com/Beastie-boys-get-it-together-lyrics
http://genius.com/Beastie-boys-get-it-together-lyrics


A formatted string uses the % operator to specify placeholder. Formatted printing
is also easy if you are comfortable with style used in most programming languages.

n = [1, 2, 'oh my god']
print(n)
[1, 2, 'oh my god']
# print things out with fancier printing
print("%s %s %s."%(n[0],n[1],n[2]))
# prints
1 2 oh my god.
print("%5s %5s %-10s."%(n[0],n[1],n[2]))

1 2 oh my god .
print("%-5s %5s %-10s."%(n[0],n[1],n[2]))
# prints
1 2 oh my god .
print("%-5s %5s %20s."%(n[0],n[1],n[2]))
# prints
1 2 oh my god.

Print out with placeholders

The format is first a formatting string which contains symbols {}. These {}
are replaced, in order, by the items that follow in the format() function applied.

a = 15
b = 41
print( "a + b = ", a+b)
# will print
#a + b = 56

print( "{} + {} = {}".format(a,b,a+b))
# will print
#15 + 41 = 56
print("{} ({}) + {} ({}) = {}".format("a",a,"b",b,a+b))
# will print
# a (15) + b (41) = 56

Format strings with rjust and ljust

This is less typical usage.

Can also use rjust and ljust to right or left justify a string in place.

n = [1, 2, 'oh my god']
print(n)
# will print

6



# [1, 2, 'oh my god']
# print things out with fancier printing
print(n[0].rjust(5), n[1].rjust(5), n[2].ljust(10))
# gives error
# AttributeError: 'int' object has no attribute 'rjust'

print( repr(n[0]).rjust(5), repr(n[1]).rjust(5), n[2].ljust(10))
# 1 2 oh my god
print( repr(n[0]).ljust(5), repr(n[1]).rjust(5), n[2].ljust(10))
#1 2 oh my god
print( repr(n[0]).ljust(5), repr(n[1]).rjust(5), n[2].rjust(10))
# 1 2 oh my god
print( repr(n[0]).rjust(5), repr(n[1]).rjust(5), n[2].rjust(12))
# 1 2 oh my god
print( repr(n[0]).rjust(5), repr(n[1]).rjust(5), n[2].ljust(12))
# 1 2 oh my god

String joining and appending

Strings can be appended with the + opeator.

left = "Sun"
right = "Fish"

print(left + "-" + right)

right = "Shine"
print(left + "-" + right)

The * operator followed by a number will just repeat a string that number of
times.

print("Do you want to volunteer for the mosquito trial?: ", "No "*10)

Can be useful for generating runs of single letters eg.

seq1="AAGAGTCA"
seq2="TTGATAG"
print(seq1 + "N"*100"+seq2)

Case study

You can make strings upper or lower case with string.upper() and
string.lower().

7



bases="GGATAGAaattaNGGT"
print(bases.upper())
print(bases.lower())

Practice processing strings

Let’s initialize some data and process it.

# make a string
codestr= "17,20,30,12,5,6,19,13"
# split it into an array
dat=codestr.split(",")
# print the first item
print(dat[0])
# print the sum of the 2nd and 3rd items
# this won't work because they are strings
#print(dat[1]+dat[2])
print(int(dat[1]) + int(dat[2]) )
# print the summation of the whole dataset
# this won't work because it is an array of strings
#print(sum(dat))
intarray = [ int(x) for x in dat]
print("total sum is: ",sum(intarray))

# make a new array from the 3rd and 6th columns
newarray=[dat[2],dat[5]]
# print the new array
print("the new array is ",newarray)

# make a new string from the array contents
# sort the array
intarraysort = sorted(intarray)
# convert items to a string and then join together
print(",".join([str(x) for x in intarraysort]))

8


	Python Introduction
	A first script
	The Python interpreter
	Strings in Python
	Variables
	String functions

	Lists and list functions
	Sorting lists
	Using split to parse strings into lists
	repr function to display an object/string/number

	More fancy printing
	Print out with placeholders
	Format strings with rjust and ljust
	String joining and appending
	Case study
	Practice processing strings


