
Logic, Loops and Input/IO

Looping through data and reading in files or writing out to files.

There are many Python functions available to do many things. Here is a link to
list of many of these https://docs.python.org/3/library/functions.html.

Logic

In python if statements end with : and Indentation is required. This indentation
can be with spaces or tabs, but not a mix of each.

if TRUE:
THEN DO X

elif OTHER_THING_TRUE:
THEN DO Y

else:
THEN DO Z

Loops

Loops let you

while (TRUE):
Do X

for ITERATOR in LIST:
Do Y

for i in range(5):
print(i)

Python Indentation

Most editors do this automatically but you might find it hard to detect errors
looking at the code until you try to run it if there are tabs in one part and sapces
in another.

This indentation can be either spaces or tabs. Emacs/Atom/Vi allow customizing
your editor so that when [tab] is typed it will either insert 4 spaces or a tab.
Switching between editors while editing a file can sometimes cause problems.

Solution: delete the indendentation and enter the tab (or spaces) again.

After this slide you will now understand this scene from Silicon Valley.

1

https://docs.python.org/3/library/functions.html
https://www.youtube.com/watch?v=SsoOG6ZeyUI

Logic operators

To test if somehting is equal use == or is.

== test numerical equality, is checks if both the variables point to the same
object. In some cases this can be different things so avoid using is for strings
and numbers.

x=10
if x == 10:

print("this == 10")
if x == "10":

print("this == '10'")
if x is 10:

print("this is a 10")
if x is "10":

print("This is '10'")
a = b = [1,2,3]
c = [1,2,3]
print(a == b) # this is true
print(a == c) # this is true
print(a is b) # this is true
print(a is c) # this is false

another example of testing for equality of string content
and the actual object
a="fiat"
b="".join(['f','i','a','t'])
print("a is ",a)
print("b is ",b)
if a is b:

print("strings are same") # this will NOT print
if a == b:

print("these are the same string: %s %s"%(a,b)) # this will print

!= for not equal and is not for correlary test with is.

if a is not c:
print("a is not c")

if 10 != 20:
print("10 is not equal to 20")

<, <=, >, >= for less than, less than or equal to, greater than, greater than or
equal to.

a=7
b=20
if b > 20:

2

print("b is greater than a")

Combining logical statements

not, or, and logical operators.

True and True = True True or True = True not True = False

False and False = False False or False = False not False = True

True and False = False True or False = True

a=10
b=12
c=13
if a < b and b < c:

print("a is smaller than c")

if not a == b:
print("a is not equal to b")

else:
print("a is equal to b")

Loops

while loops iterate as long as a condition is true.

x=1
while (x < 10):

print("x is ",x)
x += 1

for loops through a set of items

DNA="AACGCA"
for base in DNA:

print("base is ",base)

range operator (like seq in UNIX)

Simple way to setup a counter. See the range

for i in range(1,10): # forwards counting
print(i)

for i in range(10,0,-1): #backwards counting
print(i)

3

https://docs.python.org/3/library/functions.html#func-range

for i in range(2,16,2): # count by twos
print(i)

quick reminder about data types in Python

Lists are sets of values, strings, numbers. Initialize with a [] around the
values. Tuples are sets of values but they are immutable (cannot change) and
are initialized with ().

mylist = ['a', 'b','c']
mylist.append('z')
mylist[2]='C'
mylist.insert(0,'Start')
print(mylist)
will print
['Start', 'a', 'b', 'C', 'z']

A tuple cannot be changed

mylist = ('a', 'b','c')
this next line will throw an error
mylist.append('z')

print(mylist)
will print (note the parens not [])
('a', 'b', 'c')

Iterate on a list or tuple

list = [7, 10, 2, 2, 7]
for i in range(len(list)):

print("list item ",i, "=",list[i])
print("list[%d] = %s"%(i,list[i])) # I like formatted printing too

list=(1,7,8)
for item in list:

print("item is ",item)
prints out
item[0] = 1
item[1] = 7
item[2] = 8

#can use enumerate to get the index number
for idx,item in enumerate(list):

print("item[%d] = %s"%(idx,item))

4

prints out
item [0] = 7
item [1] = 10

Exiting a loop early

Sometimes we want to exit the loop if a condition is met. continue will jump
back to the beginning of the loop and not execute any more of the code block.
break will exit the loop all together.

list = ('a', 'b', 'c', 'C','d')
for l in list:

if l == "b":
continue

if l == "C":
break

print(l)

would print only the following
a
c

File handles

The open function is used to open file handles. Good reference can be found at
https://en.wikibooks.org/wiki/Python_Programming/Input_and_Output

Data streams could be from cmdline (eg STDIN)

$ cat file | python myscript.py

Inside the Python code here we print every line that is sent in.

#!/usr/bin/env python

import sys # this tells python we need to use a package called sys
i=0
for line in sys.stdin:

print("line[%d] is %s"%(i,line),
end = '')

i +=1

Can also open files for reading with open.

filehandle = open(myfile,"r")

Here is a program that will read in each line from a file and print it back out.

5

https://en.wikibooks.org/wiki/Python_Programming/Input_and_Output

#!/usr/bin/env python
i=0
file = "data1.dat"
fh = open(file,"r")
for line in fh:

print("line[%d] is %s"%(i,line),
end = ''))

i+=1

What if file wasn’t there. Try it but python will throw an error and exit. You
could protect your code a bit more with this construction.

with open(myfile,"r") as fh:
for line in fh:

print(line)

The with means only run the next lines if the filehandle can be opened. There
are additional more robust error handling and catching options.

Writing data out

Besides using print to the OUTPUT stream we can write to a file

ofh = open("my_data.tab","w")
ofh.write("Species\tHabitat\tSize\n")
ofh.write("Crab\tBeach\tM\n")
ofh.write("Fish\tOcean\tS\n")

$ cat my_data.tab
Species Habitat Size
Crab Beach M
Fish Ocean S

Modules

Modules are collections of code routines. We will talk more about func-
tions/routines in next lecture. Can use these as tools.

sys - System-specific parameters and functions urllib.request - URLs for opening
web or network connections csv - Comma and Tab delimited data parsing

STDIN again

Remember we can pass data into a program via STDIN if we use the ‘|’ “pipes”
in UNIX. Here we just wrote a wc -l replacement.

6

https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/urllib.request.html#module-urllib.request
https://docs.python.org/3/library/csv.html

import sys
counter = 0
for line in sys.stdin:

counter += 1
print ("There are",counter, "lines")

Streams can be URL too

Can be a network connection (eg URL for web or FTP)

import urllib.request
orginfo = "https://raw.githubusercontent.com/biodataprog/GEN220_data/main/data/random_exons.csv"
info = urllib.request.urlopen(orginfo)
for line in info:

linestrip = line.decode('UTF-8').strip()
print(linestrip)

CSV files

Comma delimited files can be parsed this way. The module is smart enough to
handle cases where the delimiter is embedded within quotes. So for example

Colorado State University,"Fort Collins, Colorado",CSU

import csv
file2 = "test2.csv"
with open(file2) as csvfile:

reader = csv.reader(csvfile,delimiter=",")
for row in reader:

print("\t".join(row))
with open("outtest.csv","w") as csvfile:

writer = csv.writer(csvfile,delimiter="\t")
writer.writerow(["Name","Flavor","Color"])
writer.writerow(["Apple","Sweet","Red"])
writer.writerow(["Pretzel","Salty","Brown"])

7

https://docs.python.org/3/library/csv.html

	Logic, Loops and Input/IO
	Logic
	Loops
	Python Indentation
	Logic operators
	Combining logical statements
	Loops
	range operator (like seq in UNIX)
	quick reminder about data types in Python

	Iterate on a list or tuple
	Exiting a loop early
	File handles
	Writing data out
	Modules
	STDIN again
	Streams can be URL too
	CSV files

