
Command Line interactions and tools

reminder of some tools

• wc - count the number of lines,words,characters
• tail - see the last N lines of a file
• head - see the first N lines of a file
• cat - print out entire file to screen
• sed - ‘stream editor’ - edit data stream on the fly
• curl - downloading tool for web/ftp data streams
• which - list path to a program based on the $PATH
• pwd - print the current working directory
• ps - processes running on the system
• man - view manual pages about a command or program
• date - date and time
• time - prefix a command/program, report how long it took to run
• find - find files/folders by name or other property
• du - reports disk usage (e.g. how big a file or folder is)
• awk - a simple language for processing files/great for column delimited

data

Reminder of some commands while at the command line

• ˆ means “Control key”
• cancel a running application: ˆC
• end a session: ˆD (End of File message)
• Tab to try to autocomplete (applications, filenames, directories)
• While typing on cmdline - jump to end of line: ˆE
• Get back to the beginning of line: ˆA
• Up and down keys cycle through history of commands
• Type !! to execute the last command
• Type history to see list of previous commands
• Type !NUMBER to excute cmd from that list
• Type !g to run the last command that started with g

Processes

UNIX allows multiple processes (programs) to be run at the same time. While
at the command line you can run a specific process, but your command line will
be blocked until that program is finished.

Try this which will run a task which just pauses for 30 seconds.

sleep 30
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Jobs are run in the foreground by default. While a job is running use ˆZ to
suspend job.

sleep 30
ˆZ
[1]+ Stopped sleep 30

To keep the job running but put it in the background use the command bg
which will puts process in background.

$ bg
[1]+ sleep 30 &

If you want to put the job back in the foreground so you can interact with it or
force cancel it use the command fg.

$ fg
fg
sleep 30

To launch a job directly into the background put an & at the end.

$ sleep 30 &

It can still be brought to the foreground with fg.

A typical use if you are using a tool which generates graphical interface that you
will interact with is to launch it in background. It will print out the process id
of the command that is running.

$ emacs &
[1] 25341

More file manipulation

Copying files

To copy a file use the command cp.

$ touch one.txt # create an empty file
$ cp one.txt two.txt# copy one file to another
$ mkdir books # make a directory
$ cp one.txt books # copy into a directory
$ ls books # list the contents
one.txt
$ cp books more_books # copy the folder, will fail
cp: books is a directory (not copied).
$ cp -r books more_books # recursive copy succeeds
$ cp one.txt two.txt books # can copy more than one at a time
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# will also OVERWRITE the previous
# one.txt that was in the folder

$ ls books
$ ls more_books

The command rsync can also be used to copy files between folders or between
computers.

Here we copy a file that is located on your laptop called LOCALFILE onto
the HPCC and will put it in the folder bigdata which is located in your home
directory.

[your laptop] $ rsync -a --progress LOCALFILE USER@cluster.hpcc.ucr.edu:bigdata/

Can also specify an explicit path (starts with /).

[your laptop] $ rsync -a --progress LOCALFILE USER@cluster.hpcc.ucr.edu:/bigdata/gen220/USER/

Can copy FROM HPCC to your local computer

[your laptop] $ rsync -a --progress USER@cluster.hpcc.ucr.edu:/bigdata/gen220/share/simple/yeast_gene_names.txt .

Moving files

Moving files is just renaming them.

$ mv one.txt three.txt # rename one.txt to three.txt
$ mv three.txt books # relocate three.txt to books folder
$ cd books
$ mv one.txt two.txt three.txt .. # move these files back UP one
directory
$ ls # nothing in the 'books' directory
$ cd .. # go back
$ ls # these files are in the current folder
one.txt two.txt three.txt books more_books
$ ls books # is now empty, we moved everything

# out of there

Running programs

How does UNIX determine what program to run?

Try typing echo $PATH to see your search directory. Also do env to see all
environment variables.

You can use the command which to tell you where a program is located

which nano # will tell you where the nano program
# is located
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Useful utility - grep

To search a file for matches the grep command is really useful and powerful.
Here we will show a short example with more details later.

Output from programs

Remember that we can redirect output with > which will overwrite a file and
>> will append to end. If we want instead of storing it we wanted to pass the
output from one program into another we use the | or pipe.

For example - count how many words and letters are in this message:

echo "This is a long sentence" | wc

Let’s get a few datasets together and try out some simple tools.

If you haven’t already checked out the github data repository for the class
examples do this:

git clone https://github.com/biodataprog/GEN220_data.git

You can also browse this dataset https://github.com/biodataprog/GEN220_data

Now lets run some basic UNIX tools on these data.

cd GEN220_data
ls # see what is in the folder, notice there is a 'data' folder
cd data
# take a look at one of the files
more codon_table.txt # Also see it here https://github.com/biodataprog/GEN220_data/blob/main/data/codon_table.txt
# let's see how many codons are in the codon table
wc -l codon_table.txt
# now let's see how many codons there are which code for Valine
grep Valine codon_table.txt # see how many show up
# now lets just report the count of the number in there
grep Valine codon_table.txt | wc -l
# note that grep is also really useful - you can tell it just to report the number of lines so
# the following also works
grep -c Valine codon_table.txt
# can pass to sort program if you want as another way to show this
grep cine codon_table.txt
grep cine codon_table.txt | sort
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Running Bioinformatics Programs

On the UCR HPCC there are many installed applications through a UNIX
module system. To load a module means to make that program part of your
path and in some cases will set other environment variables.

For example to get access to the BLAST suite.

$ which blastn
/usr/bin/which: no blastn in ....

$ module load ncbi-blast
$ which blastn
/opt/linux/centos/7.x/x86_64/pkgs/ncbi-blast/2.2.30+/bin/blastn

There are multiple versions installed on the system

module avail ncbi-blast

---- /opt/linux/centos/7.x/x86_64/modules ----------------------------
ncbi-blast/2.2.22+ ncbi-blast/2.2.30+(default) ncbi-blast/2.6.0+
ncbi-blast/2.2.25+ ncbi-blast/2.2.31+ ncbi-blast/2.7.1+
ncbi-blast/2.2.26 ncbi-blast/2.3.0+ ncbi-blast/2.8.0+
ncbi-blast/2.2.26+ ncbi-blast/2.4.0+ ncbi-blast/2.8.1+
ncbi-blast/2.2.29+ ncbi-blast/2.5.0+ ncbi-blast/2.9.0+

You can load a specific version

module load ncbi-blast/2.9.0+
which blastn
/opt/linux/centos/7.x/x86_64/pkgs/ncbi-blast/2.9.0+/bin/blastn
module unload ncbi-blast
/usr/bin/which: no blastn in ....

See what versions of modules you currently have loaded

module list
Currently Loaded Modulefiles:
1) slurm/19.05.0 4) texlive/2017 7) geos/3.7.1 10) R/3.6.0 13) iigb_utilities/1 16) miniconda3/4.3.31
2) openmpi/4.0.1-slurm-19.05.0 5) pandoc/2.0 8) gdal/2.1.3 11) perl/5.20.2 14) pbzip2/1.1.12 17) neovim/0.2.1
3) ggobi/2.1.11 6) netcdf/4.4.1.1 9) hdf5/1.10.1 12) less-highlight/1.0 15) parallel/20151222 18) ncbi-blast/2.9.0+

Running programs

curl is useful downloading from remote sites. URLs either FTP, HTTP, or
HTTPS.

$ curl https://www.uniprot.org/uniprot/E3Q6S8.fasta
>tr|E3Q6S8|E3Q6S8_COLGM RNAse P Rpr2/Rpp21/SNM1 subunit domain-containing protein
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OS=Colletotrichum graminicola (strain M1.001 / M2 / FGSC 10212) GN=GLRG_02386 PE=4 SV=1
MAKPKSESLPNRHAYTRVSYLHQAAAYLATVQSPTSDSTTNSSQPGHAPHAVDHERCLET
NETVARRFVSDIRAVSLKAQIRPSPSLKQMMCKYCDSLLVEGKTCSTTVENASKGGKKPW
ADVMVTKCKTCGNVKRFPVSAPRQKRRPFREQKAVEGQDTTPAVSEMSTGAD
$ curl -OL https://www.uniprot.org/uniprot/E3Q6S8.fasta

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 345 100 345 0 0 724 0 --:--:-- --:--:-- --:--:-- 724

$ curl -o myseqfile.fa https://www.uniprot.org/uniprot/E3Q6S8.fasta

Often use the -L in curl to allow URL redirects. There are also resuming options
(-C) and ways to pass in username/password for authenticated sites. Also

• wget - also gets web/FTP on commandline
• ncftpget - for ftp
• lftp - a command line FTP client - also works for http/web

Redirect output and input

> - write out the output to file (create it if empty, and overwrite if exists)

$ curl https://www.uniprot.org/uniprot/E3Q6S8.fasta > E3Q6S8.fa

>> - write out output to a file (create it if empty) but append to the end of the
file

$ echo "my name is " >> what_is_my name
$ echo "Joe" >> what_is_my_name
$ cat what_is_my_name
my name is
Joe

< - This is for redirecting INPUT from a file. We’ll talk about this more but is
how we might pull a set of commands into a program expecting input

$ R --no-save < My_R_commands.R

Compression

File compression can save disk space, reduce file transfer time when copying
between computers

• gzip for GNUzip compression. Single file at a time.
• pigz is parallelized and can use multiple processors
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$ pigz file.txt

$ du -h data/Nc20H.expr.tab # report how big the file is
656K data/Nc20H.expr.tab
$ pigz data/Nc20H.expr.tab # to compress
$ du -h data/Nc20H.expr.tab.gz # report size of compressed file
236K data/Nc20H.expr.tab.gz
$ pigz -d data/Nc20H.expr.tab.gz # to uncompress

• bzip2 for Bzip compression. Better compression than gzip but slower.
• pbzip2 is parallelized and can use multiple processors

$ module load pbzip2
$ bzip2 data/Nc20H.expr.tab # compress with bzip2
$ du -h data/Nc20H.expr.tab.bz2 # report size of bzipped file
204K data/Nc20H.expr.tab.bz2
$ bunzip2 data/Nc20H.expr.tab.bz2

zcat, zmore and bzcat, bzmore to read compressed files on the fly

$ zmore file.gz

Disk space usage of files

du - disk usage * -h – show result in human readable output (eg butes, Kilobytes,
Gigabytes) $ –time - show time of last update

$ du -h /bigdata/gen220/shared/data_files/S_cerevisiae_ORFs.fasta
11M /bigdata/gen220/shared/data_files/S_cerevisiae_ORFs.fasta
$ du /bigdata/gen220/shared/data_files/S_cerevisiae_ORFs.fasta
10752 /bigdata/gen220/shared/data_files/S_cerevisiae_ORFs.fasta
$ du -h --time /bigdata/gen220/shared/data_files/S_cerevisiae_ORFs.fasta

Can also be used on folders to summarize the total size of contents of a folder.

Running programs

The pipe operator | allows you to instead of redirecting output to a file, redirect
it to another program. Specifically the STDIN of the other program. This is
very powerful and allows you to chain together different processes

$ zcat data/Nc20H.expr.tab.gz | wc -l
# output from zcat is printed to STDOUT and that is redirected
# to the command wc with the -l option which in turn
# expects input on STDIN.
# Output from a program can be fed to a pager like less
$ blastn -help | less
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$ fasta36 query db | more
$ fasta36 query db | tee report.out | more

tee is a program which reads from STDIN and writes this BOTH to a file and
to STDOUT. A way to monitor a program but to also detach from reading the
messages and still capture it all to a file.

Multiple pipes can be used, and building together we can start to construct a
series of queries. Will go into this more in detail in the next lecture but here we
process a file and capture

# shows top ten results from a blast report
$ zcat data/blast.out.gz | head -n 10

# returns the total number of unique items found in column 1
$ zcat data/blast.out.gz | awk '{print $1}' | sort | uniq | wc -l

# take output from blast program, compress it on the fly to a new file
$ blastn -query query.fa -db db.fa -outfmt 6 | gzip -c > blastresult.gz

Using the HPCC cluster

On Biocluster there are a couple of folder structures to understand

• /rhome/USERNAME your home directory - limited space (20gb)
• /bigdata/labname/USERNAME your ‘bigdata’ folder (bigger space (100gb+)
• /bigdata/labname/shared shared folder space for your lab

Currently everyone is in the the gen220 ‘lab’ during this course so you have
access to /bigdata/gen220/shared and /bigdata/gen220/USERNAME

How much data am I using currently: https://dashboard.hpcc.ucr.edu

/scratch - local space on a cluster node which is FAST disk access but temporary
(30 days)

Transferring data

Graphical tools: Filezilla - https://filezilla-project.org/download.php

Command-line:

# interactive FTP client
$ sftp USERNAME@cluster.hpcc.ucr.edu
# copy a file
$ scp USERNAME@cluster.hpcc.ucr.edu:fileoncluster.txt ./file-on-your-machine.txt
# copy a folder, recursively
$ scp -r USERNAME@cluster.hpcc.ucr.edu:/bigdata/gen220/shared/simple .
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# rsync copies, but can check and only copy changed files
$ rsync -a --progress USERNAME@cluster.hpcc.ucr.edu:/bigdata/gen220/shared/simple .
# copy FROM your computer TO the cluster, swap order - here
# copy a folder back to your HOME directory
$ scp -r simple USERNAME@cluster.hpcc.ucr.edu:

Submitting jobs

Currently only shown login to the main “head” node (cluster.hpcc.ucr.edu)

To use the 6500 CPUs we need to submit job for running. This is called a job
management or queueing system.

We use SLURM on the UCR system currently.

We use the SLURM queuing systems on HPCC. Read info here for more resources.
http://hpcc.ucr.edu/manuals_linux-cluster_jobs.html

Getting an interactive shell (eg get your own CPU to do work on)

$ srun --pty bash -l
$ srun --nodes 1 --ntasks 2 --mem 8gb --time 8:00:00 --pty bash -l

You can type this in on the cmdline (also click here to see what you will be
retrieving )

module load ncbi-blast
module load db-ncbi
curl -O https://www.uniprot.org/uniprot/Q5T6X5.fasta
blastp -num_threads 2 -query Q5T6X5.fasta -db swissprot -out result.blastp

Batch/non-interactive job

You can also make this a job script (call it job.sh)

#!/bin/bash
module load ncbi-blast
module load db-ncbi
curl -O https://www.uniprot.org/uniprot/Q5T6X5.fasta
blastp -num_threads 2 -query Q5T6X5.fasta -db swissprot -out result.blastp

Submit it with the following options

$ sbatch -N 1 -n 2 -p short job.sh

Requesting job resources

• number of CPUs: –ntasks N OR -n
• memory: –mem Xgb
• runtime: –time 12:00:00
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• outputfile: –out results.log

Can also set these INSIDE the script

#!/bin/bash
#SBATCH --nodes 1 --ntasks 2 --mem 2gb --time 2:00:00
module load ncbi-blast
module load db-ncbi
curl -O https://www.uniprot.org/uniprot/Q5T6X5.fasta
blastp -num_threads 2 -query Q5T6X5.fasta -db swissprot -out result.blastp
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