There are several strategies for variant calling.
#SBATCH -p batch -N 1 -n 4 --mem 16gb
module unload perl
module load samtools
module load bcftools
GENOME=S_enterica_CT18.fasta
# need to make a string which is all the bam files you want to process
# but if we do *.bam it will catch the intermediate bam files that are in the folder
for a in $(cat acc.txt)
do
m="$a.bam $m"
done
VCF=Salmonella.vcf.gz
VCFFILTER=Salmonella.filtered.vcf.gz
bcftools mpileup -Ou -f $GENOME $m | bcftools call -vmO z -o $VCF
tabix -p vcf $VCF
bcftools stats -F $GENOME -s - $VCF > $VCF.stats
mkdir -p plots
plot-vcfstats -p plots/ $VCF.stats
bcftools filter -O z -o $VCFFILTER -s LOWQUAL -i'%QUAL>10' $VCF
An existing framework that works can be checked out from https://github.com/biodataprog/GEN220_2022_examples see the Variants folder.
Make sure you are running this in ~/bigdata or somewhere with enough space as this will generate large files.
The first script pipeline_GATK/00_index.sh
will download the genome, index and download the fastq files from NCBI SRA. If you had different datasets you would develop your own data files and script.
you don’t need to copy this code - do the git checkout (eg cd ~/bigdata; git clone https://github.com/biodataprog/GEN220_2022_examples; cd Variants
) and then you can run these steps.
This has a configuration file which defines some variables used by the pipeline.
GENOMEFOLDER=genome
REFGENOME=genome/FungiDB-39_AfumigatusAf293_Genome.fasta
GENOMENAME=Af293
SAMPFILE=samples.csv
FASTQFOLDER=input
FASTQEXT=fastq.gz
UNMAPPED=unmapped
UNMAPPEDASM=unmapped_asm
ASMEXT=fasta
ALNFOLDER=aln
ALNTOOL=bwa
HTCFOLDER=cram
HTCEXT=cram
HTCFORMAT=cram
TEMP=cram
GVCFFOLDER=Variants
VARIANTFOLDER=Variants
TREEDIR=strain_tree
RGCENTER=NCBI
RGPLATFORM=Illumina
GVCF_INTERVAL=1
FINALVCF=vcf
PREFIX=Afum_v1
REFNAME=AF293-REF
SLICEVCF=vcf_slice
SNPEFFOUT=snpEff
snpEffConfig=snpEff.config
SNPEFFGENOME=AfumigatusAf293_FungiDB
GFFGENOME=FungiDB-49_AfumigatusAf293.gff
You can customize that as you need for your own data.
The samples.csv
has a header and is 3 samples for strains from the fungus Aspergillus fumigatus.
Strain,Filebase
CEA10,SRR7418934
ISSF_21,SRR4002443
1F1SW_F4,SRR4002444
IFM_60237,DRR022927
Run this as sbatch pipeline_GATK/00_index.sh
- you will need to wait for it to finish before doing step 2.
This step uses the 4 strains which are already on the cluster.
Or if you are on your own computer and have the sratoolkit (fastq-dump) installed it will download that.
#!/usr/bin/bash
module load samtools/1.11
module load bwa/0.7.17
if [ -f config.txt ]; then
source config.txt
fi
mkdir -p $FASTQFOLDER $GENOMEFOLDER
pushd $GENOMEFOLDER
# THIS IS EXAMPLE CODE FOR HOW TO DOWNLOAD DIRECT FROM FUNGIDB
RELEASE=49
SPECIES=AfumigatusAf293
URL=https://fungidb.org/common/downloads/release-${RELEASE}/$SPECIES
PREF=FungiDB-${RELEASE}_${SPECIES}
FASTAFILE=${PREF}_Genome.fasta
DOMAINFILE=${PREF}_InterproDomains.txt
GFF=${PREF}.gff
## THIS IS FUNGIDB DOWNLOAD PART
echo "working off $FASTAFILE - check if these don't match may need to update config/init script"
if [ ! -f $DOMAINFILE ]; then
curl -O $URL/txt/$DOMAINFILE
fi
if [ ! -f $FASTAFILE ] ; then
curl -O $URL/fasta/data/$FASTAFILE
fi
if [ ! -f $GFF ]; then
curl -O $URL/gff/data/$GFF
fi
if [[ ! -f $FASTAFILE.fai || $FASTAFILE -nt $FASTAFILE.fai ]]; then
samtools faidx $FASTAFILE
fi
if [[ ! -f $FASTAFILE.bwt || $FASTAFILE -nt $FASTAFILE.bwt ]]; then
bwa index $FASTAFILE
fi
DICT=$(basename $FASTAFILE .fasta)".dict"
if [[ ! -f $DICT || $FASTAFILE -nt $DICT ]]; then
rm -f $DICT
samtools dict $FASTAFILE > $DICT
ln -s $DICT $FASTAFILE.dict
fi
popd
module load sratoolkit
IFS=,
tail -n +2 $SAMPFILE | while read STRAIN SRA
do
echo $STRAIN $SRA
# if On UCR HPCC can use already downloaded files
if [ ! -f $FASTQFOLDER/${SRA}_1.$FASTQEXT ]; then
if [ -f /bigdata/gen220/shared/data/Afum/${SRA}_1.$FASTQEXT ]; then
ln -s /bigdata/gen220/shared/data/Afum/${SRA}_[12].$FASTQEXT $FASTQFOLDER
else
fastq-dump -O $FASTQFOLDER --split-e --gzip $SRA
fi
fi
done
Run this as
sbatch -a 1-4 pipeline_GATK/01_align.sh
You will need to wait for it to finish before doing step 3. This step uses the 4 strains. The code at the bottom is for generating a dataset of unaligned reads for further assembly alone.
#!/bin/bash
#SBATCH -N 1 -n 16 --mem 32gb --out logs/bwa.%a.log --time 8:00:00
module load bwa
module load samtools/1.11
module load picard
module load gatk/4
module load java/13
MEM=32g
TMPOUTDIR=tmp
if [ -f config.txt ]; then
source config.txt
fi
if [ -z $REFGENOME ]; then
echo "NEED A REFGENOME - set in config.txt and make sure 00_index.sh is run"
exit
fi
if [ ! -f $REFGENOME.dict ]; then
echo "NEED a $REFGENOME.dict - make sure 00_index.sh is run"
fi
mkdir -p $TMPOUTDIR $ALNFOLDER
CPU=2
if [ $SLURM_CPUS_ON_NODE ]; then
CPU=$SLURM_CPUS_ON_NODE
fi
N=${SLURM_ARRAY_TASK_ID}
if [ -z $N ]; then
N=$1
fi
if [ -z $N ]; then
echo "cannot run without a number provided either cmdline or --array in sbatch"
exit
fi
MAX=$(wc -l $SAMPFILE | awk '{print $1}')
if [ $N -gt $MAX ]; then
echo "$N is too big, only $MAX lines in $SAMPFILE"
exit
fi
IFS=,
tail -n +2 $SAMPFILE | sed -n ${N}p | while read STRAIN FILEBASE
do
# BEGIN THIS PART IS PROBABLY PROJECT SPECIFIC
# THIS COULD NEED TO BE CHANGED TO R1 R2 or R1_001 and R2_001 etc
PAIR1=$FASTQFOLDER/${FILEBASE}_1.$FASTQEXT
PAIR2=$FASTQFOLDER/${FILEBASE}_2.$FASTQEXT
PREFIX=$STRAIN
# END THIS PART IS PROBABLY PROJECT SPECIFIC
echo "STRAIN is $STRAIN $PAIR1 $PAIR2"
TMPBAMFILE=$TMPOUTDIR/$STRAIN.unsrt.bam
SRTED=$TMPOUTDIR/$STRAIN.srt.bam
DDFILE=$TMPOUTDIR/$STRAIN.DD.bam
FINALFILE=$ALNFOLDER/$STRAIN.$HTCEXT
READGROUP="@RG\tID:$STRAIN\tSM:$STRAIN\tLB:$PREFIX\tPL:illumina\tCN:$RGCENTER"
if [ ! -s $FINALFILE ]; then
if [ ! -s $DDFILE ]; then
if [ ! -s $SRTED ]; then
if [ -e $PAIR1 ]; then
if [ ! -f $TMPBAMFILE ]; then
# potential switch this to bwa-mem2 for extra speed
bwa mem -t $CPU -R $READGROUP $REFGENOME $PAIR1 $PAIR2 | samtools view -1 -o $TMPBAMFILE
fi
else
echo "Cannot find $PAIR1, skipping $STRAIN"
exit
fi
samtools fixmate --threads $CPU -O bam $TMPBAMFILE $TEMP/${STRAIN}.fixmate.bam
samtools sort --threads $CPU -O bam -o $SRTED -T $TEMP $TEMP/${STRAIN}.fixmate.bam
if [ -f $SRTED ]; then
rm -f $TEMP/${STRAIN}.fixmate.bam $TMPBAMFILE
fi
fi # SRTED file exists or was created by this block
time java -jar $PICARD MarkDuplicates I=$SRTED O=$DDFILE \
METRICS_FILE=logs/$STRAIN.dedup.metrics CREATE_INDEX=true VALIDATION_STRINGENCY=SILENT
if [ -f $DDFILE ]; then
rm -f $SRTED
fi
fi # DDFILE is created after this or already exists
samtools view -O $HTCFORMAT --threads $CPU --reference $REFGENOME -o $FINALFILE $DDFILE
samtools index $FINALFILE
if [ -f $FINALFILE ]; then
rm -f $DDFILE
rm -f $(echo $DDFILE | sed 's/bam$/bai/')
fi
fi #FINALFILE created or already exists
# The rest of this could be skipped as it is for a project to extrat the UNMAPPED reads and assemble them separately
FQ=$(basename $FASTQEXT .gz)
UMAP=$UNMAPPED/${STRAIN}.$FQ
UMAPSINGLE=$UNMAPPED/${STRAIN}_single.$FQ
#echo "$UMAP $UMAPSINGLE $FQ"
if [ ! -f $UMAP ]; then
module load BBMap
samtools fastq -f 4 --threads $CPU -N -s $UMAPSINGLE -o $UMAP $FINALFILE
pigz $UMAPSINGLE
repair.sh in=$UMAP out=$UMAP.gz
unlink $UMAP
fi
done
sbatch -a 1-4 pipeline_GATK/02_call_gvcf.sh
#!/usr/bin/bash
#SBATCH -p intel -N 1 -n 16 --mem 32gb --out logs/make_gvcf.%a.log --time 48:00:00
module load picard
module load java/13
module load gatk/4
module load bcftools
MEM=32g
SAMPFILE=samples.csv
if [ -f config.txt ]; then
source config.txt
fi
DICT=$(echo $REFGENOME | sed 's/fasta$/dict/')
if [ ! -f $DICT ]; then
picard CreateSequenceDictionary R=$GENOMEIDX O=$DICT
fi
mkdir -p $VARIANTFOLDER
CPU=1
if [ $SLURM_CPUS_ON_NODE ]; then
CPU=$SLURM_CPUS_ON_NODE
fi
N=${SLURM_ARRAY_TASK_ID}
if [ ! $N ]; then
N=$1
fi
if [ ! $N ]; then
echo "need to provide a number by --array slurm or on the cmdline"
exit
fi
hostname
date
IFS=,
tail -n +2 $SAMPFILE | sed -n ${N}p | while read STRAIN SAMPID
do
# BEGIN THIS PART IS PROJECT SPECIFIC LIKELY
# END THIS PART IS PROJECT SPECIFIC LIKELY
echo "STRAIN is $STRAIN"
GVCF=$VARIANTFOLDER/$STRAIN.g.vcf
ALNFILE=$ALNFOLDER/$STRAIN.$HTCEXT
if [ -s $GVCF.gz ]; then
echo "Skipping $STRAIN - Already called $STRAIN.g.vcf.gz"
exit
fi
if [[ ! -f $GVCF || $ALNFILE -nt $GVCF ]]; then
time gatk --java-options -Xmx${MEM} HaplotypeCaller \
--emit-ref-confidence GVCF --sample-ploidy 1 \
--input $ALNFILE --reference $REFGENOME \
--output $GVCF --native-pair-hmm-threads $CPU \
-G StandardAnnotation -G AS_StandardAnnotation -G StandardHCAnnotation
fi
bgzip --threads $CPU -f $GVCF
tabix $GVCF.gz
done
date
wc -l genome/*.fai
If your genome is fragmented you will want to adjust the parameter in config.txt
file so that GVCF_INTERVAL=1
is more like 5 or 10 and then adjust your job number by that factor. Eg if you have 1000 contigs and GVCF_INTERVAL=5
then you would want to run array jobs with 1000/5 = 200 instead of 1000 jobs.
sbatch -a 1-9 pipeline_GATK/03_jointGVCF_call_slice.sh
Here is the Code
#!/usr/bin/bash
#SBATCH --mem 24G --nodes 1 --ntasks 2 -J slice.GVCFGeno --out logs/GVCFGenoGATK4.slice_%a.log -p intel
#--time 48:00:00
hostname
MEM=24g
module unload java
module load picard
module load gatk/4
module load java/13
module load bcftools
module load parallel
source config.txt
declare -x TEMPDIR=$TEMP/$USER/$$
cleanup() {
#echo "rm temp is: $TEMPDIR"
rm -rf $TEMPDIR
rmdir $TEMPDIR
}
# Set trap to ensure cleanupis stopped
trap "cleanup; rm -rf $TEMPDIR; exit" SIGHUP SIGINT SIGTERM EXIT
GVCF_INTERVAL=1
N=${SLURM_ARRAY_TASK_ID}
if [ -z $N ]; then
N=$1
if [ -z $N ]; then
echo "Need an array id or cmdline val for the job"
exit
fi
fi
if [ -f config.txt ]; then
source config.txt
fi
if [ -z $SLICEVCF ]; then
SLICEVCF=vcf_slice
fi
mkdir -p $SLICEVCF
STEM=$SLICEVCF/$PREFIX.$N
GENOVCFOUT=$STEM.all.vcf
FILTERSNP=$STEM.SNP.filter.vcf
FILTERINDEL=$STEM.INDEL.filter.vcf
SELECTSNP=$STEM.SNP.selected.vcf
SELECTINDEL=$STEM.INDEL.selected.vcf
if [ ! -f $REFGENOME ]; then
module load samtools/1.9
samtools faidx $REFGENOME
fi
NSTART=$(perl -e "printf('%d',1 + $GVCF_INTERVAL * ($N - 1))")
NEND=$(perl -e "printf('%d',$GVCF_INTERVAL * $N)")
MAX=$(wc -l $REFGENOME.fai | awk '{print $1}')
if [ "$NSTART" -gt "$MAX" ]; then
echo "NSTART ($NSTART) > $MAX"
exit
fi
if [ "$NEND" -gt "$MAX" ]; then
NEND=$MAX
fi
echo "$NSTART -> $NEND"
CPU=$SLURM_CPUS_ON_NODE
if [ ! $CPU ]; then
CPU=2
fi
if [[ $(ls $GVCFFOLDER | grep -c -P "\.g.vcf$") -gt "0" ]]; then
parallel -j $CPU bgzip {} ::: $GVCFFOLDER/*.g.vcf
parallel -j $CPU tabix -f {} ::: $GVCFFOLDER/*.g.vcf.gz
fi
FILES=$(ls $GVCFFOLDER/*.g.vcf.gz | sort | perl -p -e 's/(\S+)\n/-V $1 /')
INTERVALS=$(cut -f1 $REFGENOME.fai | sed -n "${NSTART},${NEND}p" | perl -p -e 's/(\S+)\n/--intervals $1 /g')
mkdir -p $TEMPDIR
if [ ! -f $GENOVCFOUT.gz ]; then
if [ ! -f $GENOVCFOUT ]; then
DB=$TEMPDIR/${GVCFFOLDER}_slice_$N
rm -rf $DB
gatk --java-options "-Xmx$MEM -Xms$MEM" GenomicsDBImport --consolidate --merge-input-intervals --genomicsdb-workspace-path $DB $FILES $INTERVALS --tmp-dir $TEMPDIR --reader-threads $CPU
#--reader-threads $CPU
#gatk --java-options "-Xmx$MEM -Xms$MEM" GenomicsDBImport --genomicsdb-workspace-path $DB $FILES $INTERVALS --reader-threads $CPU
time gatk GenotypeGVCFs --reference $REFGENOME --output $GENOVCFOUT -V gendb://$DB --tmp-dir $TEMPDIR
ls -l $TEMPDIR
rm -rf $DB
fi
if [ -f $GENOVCFOUT ]; then
bgzip $GENOVCFOUT
tabix $GENOVCFOUT.gz
fi
fi
TYPE=SNP
echo "VCF = $STEM.$TYPE.vcf.gz"
if [[ ! -f $STEM.$TYPE.vcf.gz ]]; then
gatk SelectVariants \
-R $REFGENOME \
--variant $GENOVCFOUT.gz \
-O $STEM.$TYPE.vcf \
--restrict-alleles-to BIALLELIC \
--select-type-to-include $TYPE --create-output-variant-index false
bgzip $STEM.$TYPE.vcf
tabix $STEM.$TYPE.vcf.gz
fi
if [[ ! -f $FILTERSNP.gz || $STEM.$TYPE.vcf.gz -nt $FILTERSNP.gz ]]; then
gatk VariantFiltration --output $FILTERSNP \
--variant $STEM.$TYPE.vcf.gz -R $REFGENOME \
--cluster-window-size 10 \
--filter-expression "QD < 2.0" --filter-name QualByDepth \
--filter-expression "MQ < 40.0" --filter-name MapQual \
--filter-expression "QUAL < 100" --filter-name QScore \
--filter-expression "SOR > 4.0" --filter-name StrandOddsRatio \
--filter-expression "FS > 60.0" --filter-name FisherStrandBias \
--missing-values-evaluate-as-failing --create-output-variant-index false
# --filter-expression "MQRankSum < -12.5" --filter-name MapQualityRankSum \
# --filter-expression "ReadPosRankSum < -8.0" --filter-name ReadPosRank \
bgzip $FILTERSNP
tabix $FILTERSNP.gz
fi
if [[ ! -f $SELECTSNP.gz || $FILTERSNP.gz -nt $SELECTSNP.gz ]]; then
gatk SelectVariants -R $REFGENOME \
--variant $FILTERSNP.gz \
--output $SELECTSNP \
--exclude-filtered --create-output-variant-index false
bgzip $SELECTSNP
tabix $SELECTSNP.gz
fi
TYPE=INDEL
if [ ! -f $STEM.$TYPE.vcf.gz ]; then
gatk SelectVariants \
-R $REFGENOME \
--variant $GENOVCFOUT.gz \
-O $STEM.$TYPE.vcf --select-type-to-include MIXED --select-type-to-include MNP \
--select-type-to-include $TYPE --create-output-variant-index false
bgzip $STEM.$TYPE.vcf
tabix $STEM.$TYPE.vcf.gz
fi
if [[ ! -f $FILTERINDEL.gz || $STEM.$TYPE.vcf.gz -nt $FILTERINDEL.gz ]]; then
gatk VariantFiltration --output $FILTERINDEL \
--variant $STEM.$TYPE.vcf.gz -R $REFGENOME \
--cluster-window-size 10 -filter "QD < 2.0" --filter-name QualByDepth \
-filter "SOR > 10.0" --filter-name StrandOddsRatio \
-filter "FS > 200.0" --filter-name FisherStrandBias \
-filter "InbreedingCoeff < -0.8" --filter-name InbreedCoef \
--create-output-variant-index false
# -filter "ReadPosRankSum < -20.0" --filter-name ReadPosRank \
# -filter "MQRankSum < -12.5" --filter-name MapQualityRankSum \
bgzip $FILTERINDEL
tabix $FILTERINDEL.gz
fi
if [[ ! -f $SELECTINDEL.gz || $FILTERINDEL.gz -nt $SELETINDEL.gz ]]; then
gatk SelectVariants -R $REFGENOME \
--variant $FILTERINDEL.gz \
--output $SELECTINDEL \
--exclude-filtered --create-output-variant-index false
bgzip $SELECTINDEL
tabix $SELECTINDEL.gz
fi
if [ -d $TEMPDIR ]; then
rmdir $TEMPDIR
fi
sbatch pipeline_GATK/04_combine_vcf.sh
sbatch pipeline_GATK/08_snpEff.sh
#!/usr/bin/bash
#SBATCH --mem=64G -p batch --nodes 1 --ntasks 2 --out logs/snpEff.log
module unload miniconda2
module load miniconda3
module load snpEff
module load bcftools/1.11
module load tabix
# THIS IS AN EXAMPLE OF HOW TO MAKE SNPEFF - it is for A.fumigatus
SNPEFFGENOME=AfumigatusAf293_FungiDB_39
GFFGENOME=$SNPEFFGENOME.gff
MEM=64g
# this module defines SNPEFFJAR and SNPEFFDIR
if [ -f config.txt ]; then
source config.txt
fi
GFFGENOMEFILE=$GENOMEFOLDER/$GFFGENOME
FASTAGENOMEFILE=$GENOMEFOLDER/$GENOMEFASTA
if [ -z $SNPEFFJAR ]; then
echo "need to defined \$SNPEFFJAR in module or config.txt"
exit
fi
if [ -z $SNPEFFDIR ]; then
echo "need to defined \$SNPEFFDIR in module or config.txt"
exit
fi
# could make this a confi
if [ -z $FINALVCF ]; then
echo "need a FINALVCF variable in config.txt"
exit
fi
mkdir -p $SNPEFFOUT
## NOTE YOU WILL NEED TO FIX THIS FOR YOUR CUSTOM GENOME
if [ ! -e $SNPEFFOUT/$snpEffConfig ]; then
rsync -a $SNPEFFDIR/snpEff.config $SNPEFFOUT/$snpEffConfig
echo "# AfumAf293.fungidb " >> $SNPEFFOUT/$snpEffConfig
# CHANGE Aspergillus fumigatus Af293 FungiDB to your genome name and source - though this is really not important - $SNPEFFGENOME.genome is really what is used
echo "$SNPEFFGENOME.genome : Aspergillus fumigatus Af293 FungiDB" >> $SNPEFFOUT/$snpEffConfig
chroms=$(grep '##sequence-region' $GFFGENOMEFILE | awk '{print $2}' | perl -p -e 's/\n/, /' | perl -p -e 's/,\s+$/\n/')
echo -e "\t$SNPEFFGENOME.chromosomes: $chroms" >> $SNPEFFOUT/$snpEffConfig
# THIS WOULD NEED SPEIFIC FIX BY USER - IN A.fumigatus the MT contig is called mito_A_fumigatus_Af293
echo -e "\t$SNPEFFGENOME.mito_A_fumigatus_Af293.codonTable : Mold_Mitochondrial" >> $SNPEFFOUT/$snpEffConfig
mkdir -p $SNPEFFOUT/data/$SNPEFFGENOME
gzip -c $GFFGENOMEFILE > $SNPEFFOUT/data/$SNPEFFGENOME/genes.gff.gz
rsync -aL $REFGENOME $SNPEFFOUT/data/$SNPEFFGENOME/sequences.fa
java -Xmx$MEM -jar $SNPEFFJAR build -datadir `pwd`/$SNPEFFOUT/data -c $SNPEFFOUT/$snpEffConfig -gff3 -v $SNPEFFGENOME
fi
pushd $SNPEFFOUT
COMBVCF="../$FINALVCF/$PREFIX.SNP.combined_selected.vcf.gz ../$FINALVCF/$PREFIX.INDEL.combined_selected.vcf.gz"
for n in $COMBVCF
do
echo $n
st=$(echo $n | perl -p -e 's/\.gz//')
if [ ! -f $n ]; then
bgzip $st
fi
if [ ! -f $n.tbi ]; then
tabix $n
fi
done
INVCF=$PREFIX.allvariants_combined_selected.vcf
OUTVCF=$PREFIX.snpEff.vcf
OUTTAB=$PREFIX.snpEff.tab
OUTMATRIX=$PREFIX.snpEff.matrix.tsv
DOMAINVAR=$PREFIX.snpEff.domain_variant.tsv
bcftools concat -a -d both -o $INVCF -O v $COMBVCF
java -Xmx$MEM -jar $SNPEFFJAR eff -dataDir `pwd`/data -v $SNPEFFGENOME $INVCF > $OUTVCF
bcftools query -H -f '%CHROM\t%POS\t%REF\t%ALT{0}[\t%TGT]\t%INFO/ANN\n' $OUTVCF > $OUTTAB
# this requires python3 and vcf script
# this assumes the interpro domains were downloaded from FungiDB and their format - you will need to generalize this
../scripts/map_snpEff2domains.py --vcf $OUTVCF --domains ../genome/${SNPEFFGENOME}_InterproDomains.txt --output $DOMAINVAR
# this requires Python and the vcf library to be installed - should be in the miniconda3 env but if not need to check again
../scripts/snpEff_2_tab.py $OUTVCF > $OUTMATRIX