PROTEIN DOMAINS, HMMS & MOTIFS

CLASSIFYING PROTEINS BY FUNCTION

- Important to be able to classify proteins as to what functions they perform
- This information is taken from experimental studies
- Genes have function determined from mutant

https://science.sciencemag.org/content/355/6322/294

https://en.wikipedia.org/wiki/Reverse_genetics

GENETICS TO FUNCTION

By seeing which mutations break a protein can determine what functional role the protein plays

PROTEIN CLASSIFICATION

- Many many (!) proteins if consider all the types found in all organisms
- Proteins can be classified into
 Families
- Families can be classified into
 Domains
 - This can be discrete (eg DNA binding) or part of an enzyme
- Sequence can have Features

Protein sequence

Protein Structure and Folds

PROTEIN CLASSIFICATION

Classification of domains requires recognition of regions in protein which are evolutionary conserved and function as a unit

GPCR SUPERFAMILY

Sub-types of a family - top to bottom this is a classification that is general to specific

PROTEIN DOMAINS

- Distinct functional or structural units of proteins
- SH3 structure shows the 3D folds of the protein when modeled
- Multiple domains can be found within a protein

Multidomain protein schematic

PROTEIN DOMAINS

These domains can have specific functions based

SIGNATURES OF DOMAINS CAN BE CHARACTERISTIC

the order and domain content of a protein can be a signature of the type of function

SEQUENCE FEATURES

Sequence features are groups of amino acids which confer certain characteristics

- Could be active site with particular function in enzyme
- binding site for protein-DNA, protein-RNA, proteinprotein interactions
- post translational modification site
- repeats within a protein (eg short motifs that repeat)

PROTEINS CLASSIFIED BY FEATURES

Sequence features like the type of iron- and sulfur-binding residues are used to classify a protein - this is a 2Fe-2S <u>ferredoxin</u>

Protein family/domain

CLASSIFYING PROTEINS

Start with known proteins which are similar and determined to be homologous (BLASTP)

Q5E940 BOVIN	MPREDRA	TWKSNYFLKIIQLLDDYP	CFIVGADNVGSKOMOQIRMSLRGK-	AVVLMGENTMMREAIRGHLENNPALE
RLAO HUMAN	MPREDRA	TWKSNYFLKIIQLLDDYP	CFIVGADNVGSK <mark>OMO</mark> QIRMSLRGK-	- AVVLMGENTMMREAIRGHLENNPALE
RLA0 MOUSE	MPREDRA	TWKSNYFLKIIQLLDDYP)	CFIVGADNVGSKOMOQIRMSLRGK-	AVVLMGENTMMREAIRGHLENNPALE
RLÃO RAT	MPREDRA	TWKSNYFLKIIQLLDDYP)	CFIVGADNVGSKOMOQIRMSLRGK-	AVVLMGENTMMREAIRGHLENNPALE
RLAO CHICK	MPREDRA	TWKSNYFMKIIQLLDDYP)	CFVVGADNVGSKOMOQIRMSLRGK-	AVVLMGENTMMREAIRGHLENNPALE
RLAO RANSY	MPREDRA	TWKSNYFLKIIQLLDDYP)	CFIVGADNVGSKOMOQIRMSLRGK-	AVVLMGENTMMREAIRGHLENNSALE
Q7ZUG3 BRARE	MPREDRA	TWKSNYFLKIIQLLDDYP)	CFIVGADNVGSKOMOTIRLSLRGK-	AVVLMGENTMMEKAIRGHLENNPALE
RLA0 ICTPU	MPREDRA	TWKSNYFLKIIQLLNDYP)	CFIVGADNVGSKOMOTIRLSLRGK-	AIVLMGENTMMREAIRGHLENNPALE
RLA0 DROME	MVRENKA	AWKAQYFIKVVELFDEFP)	CFIVGADNVGSKOMONIRTSLRGL-	AVVLMGENTMMEKAIRGHLENNPOLE
RLA0 DICDI	MSGAG-S	KRKKLFIEKATKLFTTYD	MIVAEADFVGSSQLOKIRKSIRGI-	GAY LMCKKTMIRKYIRDLADSKPELD
Q54LP0 DICDI	MSGAG-S	KRKNVFIEKATKLFTTYD	MIVAEADFVGSSQLQKIRKSIRGI-	GAVLMGKKTMIRKVIRDLADSKPELD
RLA0 PLAF8	MAKLSKQ	QKKQMYIEKLSSLIQQYS	(ILIVHVDNVGSNOMASVRKSLRGK-	ATILMGENTRIRTALEENLOAVPOIE
RLA0 SULAC	MIGLAVTTTKKIA	KWKVDEVAELTEKLKTHK1	IIIANIEGFPADKLHEIRKKLRGK-	ADIKVTENNLEN IALENAGYDTE
RLA0 SULTO	MRIMAVITQERKIA	KWKIEEVKELEOKLREYH1	TIIIANIEGFPADKLHDIRKKMRGM-	AEIKVTENTLEGIAAKNAGLDVS
RLA0 SULSO	MKRLALALKQRKVA	SWKLEEVKELTELIKNSN1	ILIGNLEGFPADKLHEIRKKLRGK-	ATIKVTENTLFKIAAKNAGIDIE
RLA0 AERPE	MSVVSLVGQMYKREKPIP	EWKTLMLRELEELFSKHRV	VIFADLTGTPTFVVQRVEKKLWKK-	YPMMVAKKRIILRAMKAAGLELDDN
RLAO PYRAE	-MMLAIGKRRYVRTRQYP	ARKVKIVSEATELLQKYP)	WFLFDLHGLSSRILHEYRYRL RRY-	GVIKIIKPTLFKIAFTKVYGGIPAE
RLA0 METAC	MAEERHHTEHIP	QWKKDE IEN IKEL IQSHKI	FGMVGIEGILATKMOKIRRDLKDV-	AVLEVERNTLTERALNOLGETIP
RLAO METMA	MAEERHHTEHIP	QWKKDE IEN IKEL IQS <mark>H</mark> KI	FGMVRIEGILATKIQKIRRDLKDV-	AVLKVSRNTLTERALNQLGESIP
RLA0 ARCFU	PP	EYKVRAVEE IKRMISSKP	VAIVSFRNVPAGOMOKIRREFRGK-	AEIKVVKNTLLERALDALGGDYL
RLA0_METKA	MAVKAKGOPPSGYEPKVA	EWKRREVKELKELMDEYE	WGLVDLEGIPAPOLOEIRAKLRERI	TIIRMSENTLMRIALEEKLDERPELE
RLAO METTH	MAHVA	EWKKKEVQELHDLIKGYEV	VGIANLADIPAROLOKMROTLR DS-	ALIRMSKKTLISLALEKAGRELENVD
RLAO METTL	<mark>M</mark> ITAESEHK <mark>IA</mark>	PWKIEEVNKLKELLKNGQ	IVALVDMMEVPAROLOEIRDKIR-GI	MTLEMSRNTLIERAIKEVAEETGNPEFA
RLAO METVA	<mark>M</mark> IDAKSEHK <mark>IA</mark>	PWKIEEVNALKELLKSAN	IALIDMMEVPAVOLOEIRDKIR-DO	MTLKMSRNTLIKRAVEEVAEETGNPEFA
RLAO METJA	METKVKAHVA	PWKIEEVKTLKGLIKSKP	VAIVDMMDVPAPOLOEIRDKIR-DK	WKLEMSENTLIIEALKEAAEELNNPKLA
_		•		

PROTEIN ALIGNMENT

Considering multiple sequences in the alignment so is more sensitive than BLAST. Only some residues are informative to classify the sequence This is revealed through the multiple alignment.

HOW TO CLASSIFY

- Motif pattern
- Multiple Motifs interspersed
 - Profile
 - Fingerprint
- Full alignment method with Hidden Markov Models

MOTIF DEFINED BY A PATTERN

Can write down the pattern with a series of letters and then logic called a <u>Regular Expression</u>

PROFILE

Created by converting a multiple alignment into a <u>Position Specific Scoring Matrix</u> - PSSM Amino acids at each position in the alignment are scored according to the frequency with which they occur

SCORING A PROFILE

	2	3
0.01	0.04	0.02
0.02	0.02	0.03
0.02	0.93	0.93
0.95	0.01	0.02
	0.01 0.02 0.02 0.95	0.01 0.04 0.02 0.02 0.02 0.93 0.95 0.01

Probability Matrix

log2(0.01/0.25) = -4.6

	I	2	3
А	-4.6	-2.6	-3.6
G	-3.6	-3.6	-3.0
С	-3.6	8.1	8.1
Т	1.9	-4.6	-3.6

Position Weight Matrix

SCORING A PROFILE

		2	3
А	0.01	0.04	0.02
G	0.02	0.02	0.03
С	0.02	0.93	0.93
Т	0.95	0.01	0.02

log2(0.01/0.25) = -4.6

Let's score the sequence AGATCCTGCTCG

Position Weight Matrix

$$(A,1) (G,2) (A,3)$$
AGATCCTGCTCG Score = -4.6 + -3.6 + -3.6 = -11.8

$$(G,1) (A,2) (T,3)$$
AGATCCTGCTCG Score = -3.6 + -2.6 + -3.6 = -9.8

$$(T,1) (C,2) (C,3)$$
AGATCCTGCTCG Score = 1.9 + 1.8 + 1.8 = 5.5
Score above 0 is a good score!

SCORING A PROFILE

	1	2	3
А	-4.6	-2.6	-3.6
G	-3.6	-3.6	-3.0
С	-3.6	8.1	8.1
Т	1.9	-4.6	-3.6

Consider the distribution of scores across the whole sequence to evaluate if there is a significance as well.

AGATCTTGCTCG

-11.8, -9.8, 5.5, etc

FINGERPRINT

Combination of motif or profile into a signature

CLCN1_HUMAN	F	Ρ	L	۷	Ĺ	. 1	L	. 1	F S	S /	1	L	F (CI	ł	L	I	S	Ρ	Q	А	۷	G	5	G	IF	ľ	E N	I K	T	Π	L	R	G	۷	۷	L	Κ	E	Y	L	Т	М	Κ	Α	F	۷	Α	Κ
CLCN1_RAT	F	Ρ	L	I	L	. 1	L	. 1	F	s /	1	L	F	С	2	L	I	S	P	Q	А	۷	G	S	G	I F	P 8	EN	I K	Т	1	L	R	G	۷	۷	L	κ	Ε	Y	L	Т	L	Κ	Α	F	۷	А	Κ
CLCN2_HUMAN	Y	Ρ	۷	۷	L	. 1	Т	F	F	s /	4	G	F	г	2		L	A	P	Q	А	۷	G	S	G	I F	P	EN	1 K	Т	1	L	R	G	۷	۷	L	Κ	Ε	Y	L	т	L	Κ	Т	F	L	Α	Κ
CLCN2_MOUSE	Y	Ρ	۷	۷	L	. 1	Т	F	F S	s /	4	G	F	г	Q		L	A	P	Q	А	۷	G	S	G	I F	P	EN	I K	Т	1	L	R	G	۷	۷	L	κ	Ε	Y	L	т	L	Κ	Т	F	۷	А	Κ
CLCN3_RAT	W	Α	L	S	F	A	F	1	L	A١	V	S	L١	V	<	۷I	F	Ą	Ρ	Y	Α	С	G	S	G	I F	P	E I	K	Т	1	L	S	G	F	Т	L	R	G	Y	L	G	Κ	W	Т	L	М	Г	ĸ
CLCN3_PONAB	W	Α	L	S	F	A	F	1	L	A 1	1	S	L١	V	(۷I	F	Ą	Ρ	Y	Α	С	G	S	G	I F	P	E I	K	Т	1	L	S	G	F	Т	L	R	G	Y	L	G	κ	W	т	L	М	Т	ĸ
CLCN3_RABIT	W	А	L	S	F	A	F	1	. /	A \	/	S	L	V	<	V	F	Ą	P	Y	A	С	G	S	G	IF	P	E I	K	Т	I	L	S	G	F	Т	I	R	G	Y	L	G	Κ	W	Т	L	М	Т	ĸ

Amino acids relatively well conserved across all chloride channel protein family members

Amino acids uniquely conserved in chloride channel protein 3 subfamily members

WHY ARE FINGERPRINTS USEFUL?

Can capture and model small differences between subfamilies can capture the individual differences.

In this example of a chloride channel protein family identified by blue box a subset can be further classified into channel 3 - subfamily

Multiple sequence alignment

HIDDEN MARKOV MODELS

Can model the alignment by capturing insertion and deletions and probabilistically score sequence similarity.

DATABASES OF PROTEIN DOMAINS

- Pfam Protein <u>https://pfam.xfam.org/;</u> Panther <u>http://</u> <u>www.pantherdb.org/;</u> SMART - <u>http://smart.embl-heidelberg.de/</u>
 - databases of HMMs of domains
- Prosite <u>https://prosite.expasy.org/</u> motifs
- Interpro <u>https://www.ebi.ac.uk/interpro/</u>
 - HMMs + Profiles + fingerprints

PROTEINS TO FUNCTION

- Together these domains and classifications can provide ways to link an unknown sequence to function
- If domains that makeup the protein are known can make guess about the protein function even if a homolog does not have a known function in other species
- Domains can be shared among many types of proteins
- Shuffling of domains and motifs can provide new function

SOME PROTEIN DOMAINS

- Zinc-finger <u>https://</u> <u>en.wikipedia.org/wiki/</u> <u>Zinc_finger</u>
- Typically bind DNA, protein, RNA
- Often part of transcription factors

mobidb-lite (Polyam...)

mobidb-lite (Polar)

Residue annotation

TAKE HOME POINTS

- Proteins can be classified by their similarity
- Parts of proteins can further be found to be conserved and functional
- Motifs, Profiles, Fingerprints, HMMs
- Domains discovery can be used to assign function