
Advanced UNIX and Data Processing

UNIX wildcard characters
cd GEN220_data/data
ls
Ecoli_K-12.fasta.gz Ncrassa_OR74A_InterproDomains.tab.gz rice_chr6_3kSNPs_filt.bed.gz
Nc20H.expr.tab.gz codon_table.txt rice_random_exons.bed
Nc3H.expr.tab.gz numbers.txt yeast_orfs-to-chr1.FASTA.tab.gz

If I wanted to see all the files which end in .txt

ls *.txt
codon_table.txt numbers.txt

ls -l *.txt
-rw-r--r--@ 1 jstajich staff 938 Oct 7 14:43 codon_table.txt
-rw-r--r--@ 1 jstajich staff 291 Oct 7 14:43 numbers.txt

ls r*
rice_chr6_3kSNPs_filt.bed.gz rice_random_exons.bed

ls r*.gz
rice_chr6_3kSNPs_filt.bed.gz

count lines in muliple files
wc -l *.txt

64 codon_table.txt
100 numbers.txt
164 total

count all lines in muliple compressed files
zcat *.gz | wc -l
348854

GZIP
Compression of files with gzip

$ gzip file.fa
will produce
file.fa.gz

To uncompress

$ gunzip file.fa.gz
will produce

1

file.fa

Searching for text with grep
Powerful pattern seaching with grep

Simple search for a text string:

$ grep Chr11 /bigdata/gen220/shared/data-examples/examples/random_exons.csv
Chr11,14656670,14656778
Chr11,3528895,3530426
Chr11,16238576,16239304

To get the count of number of lines that match a pattern use the -c option.

$ grep -c Chr11 /bigdata/gen220/shared/data-examples/examples/random_exons.csv
3

What if we wanted to count the number of times Chr1 showed up?

$ grep Chr1 /bigdata/gen220/shared/data-examples/examples/random_exons.csv
Chr11,14656670,14656778
Chr1,1147485,1147562
Chr12,22130532,22130707
Chr10,19029658,19029760
Chr11,3528895,3530426
Chr12,23125462,23125634
Chr1,4249358,4249468
Chr11,16238576,16239304
Chr12,9264478,9264617
Chr1,18658403,18658693
Chr12,9488597,9489239
Chr1,12152,12435
Chr1,43214981,43215253

How can we make this a more specific query? Well we know the ‘,’ comes after
so we can include that in the search.

$ grep Chr1, /bigdata/gen220/shared/data-examples/examples/random_exons.csv
Chr1,1147485,1147562
Chr1,4249358,4249468
Chr1,18658403,18658693
Chr1,12152,12435
Chr1,43214981,43215253

If you want to invert the search and find lines that DO NOT match the pattern
use the -v option.

$ grep -c Chr1, /bigdata/gen220/shared/data-examples/examples/random_exons.csv
5

2

$ grep -v -c Chr1, /bigdata/gen220/shared/data-examples/examples/random_exons.csv
25

Git and Github
Version control is useful for sharing code, keeping track of versions of software
and code (or any text). Distributed version control allows multiple people to
work on the same project or code.

Github is a free* resource for code sharing and supports a great deal of the
software development among open source projects.

Creating Github Account
https://github.com/join?source=header

Figure 1: github

After you create your account - you need to setup SSH keys on your account to
simplify check-in and checkout.

You need to add SSH keys to your account and these keys should be

3

Figure 2: github

4

stored on the computer you are doing the check outs from (eg the clus-
ter). Follow the directions here https://help.github.com/en/article
s/connecting- to- github-with- ssh on how to create key pairs. This
provides simple guide * https://help.github.com/en/articles/generating-a-
new-ssh-key-and-adding-it-to-the-ssh-agent * add the key to your account:
https://help.github.com/en/articles/adding-a-new-ssh-key-to-your-github-
account

Note that creating these same pairs on your local laptop and copying
the public key to your HPCC account. Some basic info is here as well.
https://biodataprog.github.io/GEN220/Resources/SSH_keys

Figure 3: github

Preparing Homework
Click on piazza links for homework submission:

https://piazza.com/ucr/fall2021/gen220001/resources

You should link your UCR netID to your github account so I can figure out who
has which homework.

Setting up a repository
Click through the links and accept setting up the repository.

Checking out code
Now you have created a repository for your homework. It has been prepopulated
with code framework I started for you.

5

https://help.github.com/en/articles/connecting-to-github-with-ssh
https://help.github.com/en/articles/connecting-to-github-with-ssh
https://piazza.com/ucr/fall2021/gen220001/resources

Figure 4: piazzahw

Figure 5: piazzahwlink

6

Figure 6: githubrepo

Figure 7: githubrepo

7

Figure 8: githubrepo

You want to check out this repository on the cluster (will also work to check out
to your laptop).

See the link in this window:

Go to your command line (on the cluster and check out your repository - you
will be changing YOURUSERNAME to the login you use on github.

git clone git@github.com:biodataprog/2021-homework1-YOURUSERNAME.git

If you cannot get this to work you can revert to using https but you will need
to enter your Github username and password each time you want to commit
which is annoying. Note the instructions on how to use the Git access token for
https connection.

The equivalent would look like this (except for the YOURNAME part) git
clone https://github.com/biodataprog/2021-homework1-YOURNAME.git

8

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

Making changes
Edit changes locally using nano or your favorite editor. When you are done you
can commit these changes to the repository with git commit.

git commit -m "message" file_changed.sh

Git add
If you create additional files to track you can add them to the system. You need
to tell Git which files you want to track. This is done with add

$ git add file1.sh file2.sh data/dat.tab

Git commit
To save the changes in the repository you need to commit them. This commit is
accompanied by a message with -m option

$ git commit -m "A helpful message"

If you forget to include a message it will prompt you

$ git commit
will spawn an editor for you to write a message

Last step - git push
To Sync your code on HPCC (or your laptop) wherever you have a git repository
checked out - you still need to save and push these changes to the github “cloud”.
You can do this by typing

git push

• you will be asked to enter a username (your git username) and your
password - which is the authentication token you generated before. This
is effectively a new password that can be more easily thrown away, as
compared to your github account password so this increases security of
your account. so you create this token (Personal Access Token) and it is
a long set of letters and numbers. your username is still your username.
So when you go to git clone, or git pull, or git push you will need to
put in your username and this token as the password.

So you’ll have some notepad you can copy from ready to grab this each time,
but it is kind of annoying. To overcome that you can also use the following to
cache (eg save) your password in a process that is running on the cluster for a
certain period of time. Default is 15 minutes but you can even set that cache
time to hours or days or more (but only is valid for while you are logged into
that computer I believe).

9

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token

This explains how you can save your username/password so you don’t have to en-
ter the username and password each time. https://stackoverflow.com/questions/5343068/is-
there-a-way-to-cache-https-credentials-for-pushing-commits

To get new changes
If you are collaborating on a project and someone else makes changes to the
repository, you need to sync their changes with yours. You do this by typing

git pull

Git resources
More links and helpful tutorial here

https://guides.github.com/activities/hello-world/ from github.

10

https://guides.github.com/activities/hello-world/

	Advanced UNIX and Data Processing
	UNIX wildcard characters
	GZIP
	Searching for text with grep
	Git and Github
	Creating Github Account
	Preparing Homework
	Setting up a repository
	Checking out code
	Making changes
	Git add
	Git commit
	Last step - git push
	To get new changes

	Git resources

